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DNASER I: Layout and Data Analysis
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Abstract—We present the DNA analyzer (DNASER), a novel
bioinstrumentation for real-time acquisition and elaboration of
images from fluorescent DNA microarrays. A white light beam
illuminates the target sample allowing the images grabbing on
a high sensibility and wide-band charge-coupled device camera
(ORCA II—Hamamatsu). This high-performance device permits
to acquire images faster and of higher quality than the traditional
systems. The DNA microarrays images are processed to recognize
the DNA chip spots, to analyze their superficial distribution on the
glass slide and to evaluate their geometric and intensity properties.
Differently form conventional techniques, the spots analysis is
fully automated and the DNASER does not require any additional
information about the DNA microarray geometry.

The DNASER hardware and software architecture is illustrated.
Preliminary results are shown from experiments performed on real
DNA samples.

Index Terms—DNA microarray, organic matrix.

I. INTRODUCTION

I N biomedicine, thein vivo andin vitro studies of DNA are
performed analyzing images from fluorescence microscopy

[1]. Nowadays, improvements in fluorescence microscopy
(based on sophisticated laser systems), new oligomers deposi-
tion methods, andad hocpattern recognition algorithms allow
automatic massive analysis of DNA samples processing images
of microarrays of DNA fragments.

Microarrays are matrix-shaped collections of DNA spots de-
posited on the surface of a glass or nylon slide. Each spot con-
tains many copies of a single DNA sequence such as gene. Gen-
erally, DNA spots are left on the slide using a robotic arm as
their dimension (less than 200m) does not allow a hand-made
positioning.

DNA microarrays [13], [14] allow to interrogate expression
of hundreds or thousands of genes simultaneously, both in yeast
[15] and in human cells [16]. Gene expression data derived from
arrays may be used for gene clustering [17], tissue differentia-
tion [18], and other analysis. Then, DNA microarrays provide a
medium for matching known and unknown DNA samples based
on base-pairing rules and automating the process of identifying
the unknowns.
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In the last years, the design of DNA microarrays analysis de-
vices has driven the development of specific techniques and in-
strumentation. Complex co-focal microscope [2] (to focus the
laser beam on the sample), samples preparation methods [3] (to
deposit spots on the slide), multicolor analysis systems [5] (to
compare samples with reference data), image processing rou-
tines (to extract samples characteristics), statistic analysis rou-
tines [4] (to extract the gene characteristic), and data-bases [6]
(to store the categories of genic expression).

Recently, charge-coupled device (CCD) camera technology
(Vysis [7]) has replaced the co-focal microsopy. These new sys-
tems are faster (there is no glass slide scanning), cheaper (CCD
camera are cheaper than laser scan systems), and simpler to re-
alize (it is no required laser beam motion control).

In what follows, we present a new system, the DNASER1

(equipped with the ORCA II Hamamatsu CCD camera), for the
analysis of traditional and innovative DNA microarrays [21].
In Section II, the system hardware architecture and the image
processing algorithms for the spots analysis are illustrated. In
Section III, preliminary results from experiments performed on
a real DNA sample are shown. Finally, the conclusions highlight
the results.

II. SYSTEM

A. Hardware

This section describes how the DNASER works and its main
hardware components.

The prototype, thanks to the particular optomecanical struc-
ture joined to the high-sensitivity CCD camera, generates wide
area images in a single shot using samples with very low flu-
orescence intensity. That is possible because the sample is il-
luminated with a beam produced by a white light source. The
beam, through a specific optical path, is accurately filtered and
focused on the sample and then on the CCD camera sensitive
area. A Supervisor PC controls DNA microarray images acqui-
sition and elaboration. Fig. 1 shows the main hardware blocks
of the bioinstrumentation.

The illumination system, the optical filter system and the mo-
torized holder blocks constitute the optomecanical components.
This part is shown in more detail in Fig. 2.

The light source, 3), a 150-W Xenon lamp, generates a col-
limated beam through an elliptical reflector, 2). Filters, 4) and
5), eliminate IR and UV components. In this way, one avoids
excessive heating and ultimately damage, of the sample. Two
interchangeable interference filters, 9) and 9), are placed be-
tween two achromatic doublets, 8), so as to work in parallel il-
lumination conditions. Filters 9) and 9) are different because

1Patent pending
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Fig. 1. Block diagram of the DNASER. The illumination system provides a
collimated, a wide-band, and a high brilliant white light beam. The optical filter
system allows maximizing the information coming out from the sample and
strongly reducing noise that does not represent useful information. The DNA
microarray motorized holder lets to position the sample on the focal plane of
the CCD. The ORCA II CCD camera is able to acquire images fast and of
high quality. On the supervisor PC runs the routines devolved to sample fine
positioning, image acquiring and spot analysis.

Fig. 2. Optomechanical components of DNASER. 1) Six light shields;
2) elliptical reflector; 3) high-pressure Xe lamp; 4) UV blocking filter;
5) IR blocking filter; 7) iris; 8) achromatic doublets, 9) 9, interference filters;
10) sample holder on a x-y-z-remotely controlled translation stages, and
11) CCD sensitive area.

are tuned respectively on the excitation and emission frequency
of the DNA microarray fluorescent spots. This geometry is used
both for illumination of the sample and collection of the fluores-
cence signal. The spectrally selected light is then focused onto
the sample, 10), at 45 degrees of incidence. The illuminated spot
dimension is about 1.2 1.2 mm. Three motorized linear trans-
lation stages, which are controlled by the computer, are used to
fine position the sample on the focal plane (axis) of the CCD
camera and to select the appropriate portion of area to be im-
aged ( , axis). Anad hocsoftware has been developed in
order to position the sample with micrometer precision.

The ORCA II Dual Scan Cooled 12–14 bit B/W CCD Camera
combines high-resolution, low noise and high sensitivity, high
quantum efficiency, a wide spectral response (300–700 nm) and
a high dynamic range (full well capacity of 16.000 electrons
and of 40.000 with binning). The camera has two independent
clock rates: 1.25 MHz for high-precision imaging, achieving
3–5 electrons read-out noise and 10 MHz for high frame rate
imaging. The ORCA II incorporates a CCD with an effective
1280 1024 (1.3 M pixel) pixel array and progressive scan in-
terline design to eliminate the need for a mechanical shutter.
The combination of Hamamatu’s hermetic vacuum (10-5 torr)

Fig. 3. DNASER prototype.

sealing and Peltier cooling, with air as a heat exchanger, en-
ables the CCD chip to operate at50 C. This drastically re-
duces the dark current (0.001 electron/pixels) of the CCD
chip. Special analog contrast-enhancement circuits increase ver-
satility for even the most difficult imaging conditions.

The Supervisor PC is Pentium II 233-MHz, 128-MB ram, and
2-GB hard disk.

Fig. 3 shows the actual prototype layout (the PC is not
shown).

B. The Software for Spots Analysis

On the supervisor PC runs the software routines (C language)
that implement the image processing algorithms for the spot
analysis.

Microarrays are built laying spots equidistantly in a grid.
While the orientation error of the grid is negligible, its spatial
position can significantly vary. Furthermore, depending on the
arrayer used, the distance between spots is different. In order
to develop a robust system, the image processing algorithm
developed to perform the spot analysis estimates these data
instead of supposing them given.

The input data to the spot analysis are the raw DNA mi-
croarray images. The output data of this processing are all the
spot features.

• Brightness features (spot foreground and background
intensity).

• Geometric features (spot foreground and background area,
circularity).

The microarray geometry suggests to organize the output data
using three-dimensional matrices (Fig. 4). The width and height
of the matrix are given, respectively, by the number of columns
and rows of the spots in the microarray. While, the depth is given
by the number of features associated to each spot.

These data structures permit to store the spot features
according to the relative positions that they have in the original
image. This property allows to perform further microarrays
data processing directly using the associated matrices, reducing
the computational burden. Also, this data representation is
appealing to build an efficient data-base of microarrays features
as it permits an intuitive and fast comparison of properties
among correspondent spots.
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Fig. 4. Spot features organization on 3-D matrix.

The spot analysis can be logically divided in the following
three main sequential steps:

• image segmentation;
• spot recognition;
• spot features extraction.

In the rest of this section, these algorithms will be illustrated
separately.

1) Image Segmentation:The image segmentation pro-
cessing is aimed to partition the pixels of the microarrays
images in two classes: foreground pixels, that are the pixels
belonging the microarray spots and background pixels, that are
the pixels out of the microarray spots.

The microarrays images are typically very noisy (Fig. 5,
Section III). The not-homogenous scene illumination, the
light-scattering, and not perfectly cleaned glass slides generate
unpredictable variations in the image background intensity and
also introduce in the image false foreground entities.

The simplest solution to realize the image segmentation is
the definition of a single intensity threshold and the partition
of the image in background and foreground pixels according to
its value. Indeed, due to the problems mentioned above, to use
this approach is required a preelaboration to smooth the inten-
sity variations in the image (rolling-ball algorithm [8]). Alter-
natively, this preelaboration can be avoided considering more
thresholds values evaluated, time from time , according the local
intensity distribution in the image.

Microarrays images are typically characterized by intensity
distribution that result in unimodal histograms. This property
complicates the threshold estimation problem, involving the use
of sophisticated techniques. We considered two algorithms to
estimate the background/foreground threshold for images (or
subimages), both based on the image histogram analysis:

• isodata algorithm [9];
• triangle algorithm [10].

The isodata algorithm addresses the search of the best
threshold performing an iterative process on the intensity
histogram of the image. In particular, it works considering two
main steps.

— At start, the image histogram is divided in two re-
gions (foreground and background) using the initial

Fig. 5. DNA microarray image acquired with the DNASER instrumentation.
The image is been equalized to emphasize the noisy.

threshold value evaluated as the mean of the whole
histogram.

— At each iteration, for both the background and fore-
ground regions defined as in the previous step, are
evaluated the mean intensity values, respectively,

. The mean of and is assumed as
the new threshold and according this value the
background and foreground regions are redefined. If
the threshold value evaluate in this step is the same,
then the one from the previous step the process stops.
Otherwise, this step is iterated.

The final value of is then assumed as the best threshold value
for the considered image.

The Triangle algorithm works directly estimating the
threshold value, without generating any iteration. Given the
histogram function of the image ( is the number of
pixels characterized by brightness), a segment is constructed
between the maximum of (at ) and the highest value
of in the image ( ). The distance between the segment
and the histogram is evaluated for all values .
The value of where the distance is maximal is taken as
threshold value.

It is of worth to note that, while the Isodata algorithm is a gen-
eral approach to the threshold estimation problem, the Triangle
algorithm has been developed particularly to deal with unimodal
histograms.

2) Spots Recognition:The spot recognition algorithm,
working on the segmented image, identifies the spots present in
the microarray image. In particular, this process can be divided
in two main steps.

• Spots preliminary identification: the pixels in the fore-
ground set are partitioned, including in the same subset all
the pixels that belong to the same spot. This phase builds
the candidate spot set.

• Spots identification refining: the features and position of
the spots are used to check their consistency. Also, if this
is the case, lost spots are recovered from the background
set.
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The spots’ preliminary identification is performed using a
blob analysis technique [11]. This algorithm using neighbor-
hood connectivity rules extracts image blobs (spots), that are
isolated groups of pixels in the image. Two main pixels proper-
ties drive this processing.

— Neighboring pixels: two pixels such that their Eu-
clidean distance in the image is less than two pixels.

— Boundary pixel: a foreground pixel that has at least one
background pixel as neighbor.

If and are, respectively, the foreground and background sets
and is the generic blob pixel set, the algorithm works iter-
ating the following steps until is empty.

— Take a boundary pixel from , add it to and fix
a versus along that boundary.

— Starting with , extract and add to all the pixels
evaluate ricorsively as the neighbor boundary pixel

of in the direction until .
— Take all the pixels in that lay inside the contour

drawn by and add them to .
— Update erasing all the pixels in .

At each iteration the algorithm extracts one blob, which pixels
are stored in the correspondent set. When is empty the
collection of blob sets extracted , , gives the set
of the candidate spots. Blobs made of too little number of pixels
are not considered.

The spot identification refining algorithm works on the set of
candidate spots performing two sequential elaborations. First,
the position of the candidate spots (center of mass of the relative
blobs) are evaluated and used to reconstruct the microarray grid,
that is, it is evaluated the best set of vertical and horizontal lines,
equidistant from the spots and such that just one blob is inside
one square (box) of the chess box [Fig. 8(a), Section III]. This
grid allows one to check the consistency of the candidate spots:
if they are correctly positioned, they are real spots; otherwise,
they are noise. Furthermore, if there are no candidate spots in a
chess box it means that or the spot is occluded in the image or
the pixels of this spot have been classified as background. In the
last case, a new segmentation and blob analysis process can be
performed, locally, on the image pixels that lay in chess box to
try to recover the lost spot.

It is worthwhile to deepen the grid-building task. From our
hypothesis, we know that the spots in the microarray image are
positioned along horizontal lines and are, to each other, equidis-
tant both horizontally and vertically. The absolute position of
the grid is unknown, as is the spot distance, furthermore some
spots can miss and others can be due to noise. We approached
the problem of clustering the spots (in the candidate set) that are
supposed to belong to the same microarray row (a vertical posi-
tioning error less than the medium radius of the estimated spots
is tolerated). For each row set, the medium and the variance of
the elements distances are evaluated and, among the sets with
higher cardinality, the grid distance is taken as the medium dis-
tance of the set with the smallest variance.

The second step of the identification spot refining algorithm
concerns the compatibility of each estimated spot features with
both, the expected spot properties and the medium characteris-
tics of the estimated spots. The medium value of the spot sur-

face, spot circularity and positioning error in the grid are evalu-
ated over the set of the estimated spot. These criterion are used
to perform a quality check on the estimated spots and, if it is the
case, to eliminate not reliable estimation.

3) Spot Features Extraction:Identified all the spots in the
microarray images, this processing step is aimed to extract for
each spot a set of features. Such analysis allows one to describe
the main characteristics of each spot by means of a reduced
set of parameters, simplifying the problems of characterizing,
storing, and classifying data from microarray images.

If the significant features to extract from spots are strictly
dependent on the kind of analysis that is going to be performed,
then it is not possible to define a general set of features. For this
reason, we have investigated for the features that are considered
for almost all the researches. In particular, we considered the
following spot features.

— Spot (foreground) area: The number of pixels be-
longing the correspondent blob of the image.

— Spot background area: The number of background
pixels laying in the spot chess box.

— Spot intensity: The average intensity of the correspon-
dent blob.

— Spot background intensity: The average intensity of
the background pixels in the spot chess box. Indeed,
to reduce noise, only a proper subset of these pixels is
considered [12].

— Spot circularity: A measure of the circularity of the
correspondent blob in the image.

— Spot position error: The difference between the posi-
tion of the correspondent blob in the image (its c.o.m.)
and the position of the spot chess box center.

All the described features and, if any, other specific once are
stored in the 3-D matrix illustrated above.

III. EXPERIMENTS

In this section, we show the results obtained executing the
presented algorithm on a real DNA microarray image acquired
with the DNASER instrumentation. Fig. 5 reports the grabbed
image.

As mentioned above, the image is very noisy and many spots
are barely visible. We execute different segmentation processes
on this image to compare their effectiveness. In particular, for
both isodata and triangle algorithms, we consider the threshold
search on the whole image (), with rolling-ball preelabo-
ration ( ), threshold search considering four subimages (),
and with rolling-ball preelaboration ( ).

For both, isodata and triangle methods, casesand per-
formed the best and was better then . So the best results,
also considering the computational burden, was given by cases

. Furthermore, as shown in Fig. 6, isodataoutperformed
triangle and then, in what follow, isodata is the segmenta-
tion algorithm used.

Fig. 7 reports the blobs extracted using the presented blob
analysis algorithm. Considering the real microarray structure,
it easy to see that the image is corrupted by false and missing
spots. Fig. 8(a) shows the estimated grid lines and the effect of
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(a) (b)

Fig. 6. (a) Isodata algorithm segmentation; (b) triangle algorithm
segmentation.

Fig. 7. Blob analysis extraction.

considering the estimated microarray structure to validate the
spots consistency. In fact, the false spots in the central part of
the image are erased, while the real spots on the first column
are recovered. Finally, Fig. 8(b) reports the spots that overcome
the criteria of spot quality check.

Blobs in Fig. 8(b) are considered the spots present in the DNA
microarray image and for them all the interesting features are
extracted and stored in the 3-D matrix.

IV. CONCLUSION

We presented the DNASER, a new device for the DNA mi-
croarrays analysis based on CCD camera technology. The de-
scribed prototype is a flexible analysis instrument. The spe-
cial optomecanical instrumentation and the wide-band ORCA
II camera allow to acquire DNA microarray images at different
frequencies simply changing two different interference filters.
The spot analysis algorithm is fully automated and does not re-
quire any additional information about the DNA microarray ge-
ometry. According to the relative position, the spot features are

(a) (b)

Fig. 8. (a) Estimate grid lines and spots recovered; (b) spots that overcome the
criteria of spot quality check.

stored in a 3-D structure that is appealing to build an efficient
database, for classification and further processing purposes.

Preliminary experiments on a real DNA sample showed the
different behaviors of the proposed spot analysis techniques and
demonstrated the system effectiveness in recognizing and clas-
sifying samples.

DNA microarrays analysis devices can be used in the wide
range of medical applications that require the DNA study and
classification. For example, the DNASER can be used to charac-
terize the cellular differences between different tissue type such
us between normal cells and cancer cells at different stages of
tumor progression, or between cancers with different responses
to treatment, or between control cells and cells treated with a
particular drug. To this purpose, our further work is aimed to
furnish the system with a database of different microarrays fea-
tures and to develop, using a neural network, an automatic di-
agnostic tool for classifying samples on the basis of their gene
expression pattern [18], [19].
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